25/16x^2=125

Simple and best practice solution for 25/16x^2=125 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25/16x^2=125 equation:



25/16x^2=125
We move all terms to the left:
25/16x^2-(125)=0
Domain of the equation: 16x^2!=0
x^2!=0/16
x^2!=√0
x!=0
x∈R
We multiply all the terms by the denominator
-125*16x^2+25=0
Wy multiply elements
-2000x^2+25=0
a = -2000; b = 0; c = +25;
Δ = b2-4ac
Δ = 02-4·(-2000)·25
Δ = 200000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{200000}=\sqrt{40000*5}=\sqrt{40000}*\sqrt{5}=200\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200\sqrt{5}}{2*-2000}=\frac{0-200\sqrt{5}}{-4000} =-\frac{200\sqrt{5}}{-4000} =-\frac{\sqrt{5}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200\sqrt{5}}{2*-2000}=\frac{0+200\sqrt{5}}{-4000} =\frac{200\sqrt{5}}{-4000} =\frac{\sqrt{5}}{-20} $

See similar equations:

| -4–0.2x+11=-0.8x+10 | | 5/12+x=0.75 | | 8x-14=7x+5 | | -11x+15=-7 | | 32=8t | | 30n+15=25 | | 10x+7x=28+x | | (x-27)x3=90 | | 12t-(4+10)=1/4(16+32t) | | 12t-(4+10)=1/4(16+32t0 | | 1/2x=1/2x=2 | | w2=52 | | 12x+5x=-5x-18 | | 9w+3=4w-6 | | 6(2x-8+3=15 | | 3x-2=180-2x | | 8(t+2)-3(t-4)=6+8 | | 6+11x=4x-7,2 | | 6+11=4x-7,2 | | .14x+24.99=30 | | 6x-3=3/5(15x-4) | | 3(h-4)=8 | | -0.9(n-2.7)=0.72 | | -9(x+6)=207 | | -0.9n+2.43=0.72 | | 4m-4(m-4)=2(m-4) | | 16b-4=38b+3 | | 18+30=12x-6 | | 18+t=23 | | t+17=26 | | 5=2+w | | 8-7y=-48 |

Equations solver categories